Errata for MA242 Textbook Fall 2016

\#1. Chapter 1 Section 1 Answers to Selected Exercises
Page 18. Exercise 13. The center is $(2,-3,5)$ and the radius is 5 .
\#2. Chapter 1 Section 1 Answers to Selected Exercises
Page 18. Exercise 19. The correct answer is (0,4,-2).
\#3. Chapter 1 Section 2
Page 31. In Figure 23 the angle that is labeled 82° should be 81°.
\#4. Chapter 1 Section 2 Answers to Selected Exercises
Page 39. Exercise 13. The correct answers are
(a) $10 \sqrt{62}$
(b) $5 \sqrt{5}$
(c) $\sqrt{186}$
(d) $\sqrt{395}$
(e) $\sqrt{10626}$
\#5. Chapter 1 Section 3 Example 15
Page 50. The second line and following of the solution solution should be:

$$
\begin{gathered}
\vec{u}_{\|}=\frac{(\vec{u} \cdot \vec{v})}{\|\vec{v}\|^{2}}=\left\langle\frac{4}{3},-\frac{8}{3}, \frac{8}{3}\right\rangle \\
\vec{u}_{\perp}=\vec{u}-\vec{u}_{\perp}=\left\langle\frac{8}{3}, \frac{5}{3}, \frac{1}{3}\right\rangle
\end{gathered}
$$

Thus the orthogonal decomposition of \vec{u} with respect to \vec{v} is

$$
\vec{u}=\vec{u}_{\|}+\vec{u}_{\perp}=\left\langle\frac{4}{3},-\frac{8}{3}, \frac{8}{3}\right\rangle+\left\langle\frac{8}{3}, \frac{5}{3}, \frac{1}{3}\right\rangle
$$

\#5. Chapter 1 Section 4 Exercise 19

Page 69. Exercise 19 should be rewritten as follows:

A torque wrench grips a bolt at the origin of coordinates, with the free end of the torque wrench located at the point $\left(r_{0}, 0,0\right)$. The force on this end of the torque wrench points in the direction of $\vec{V}=\langle 10,0,16\rangle$. Note that $\vec{r}=\left\langle r_{0}, 0,0\right\rangle$ in this problem. Compute the length of the lever arm $\|L\|$ needed to produce a torque with magnitude $200 \mathrm{ft}-\mathrm{lb}$ if the magnitude of the force is 100 pounds.
\#6. Chapter 2 Section 2 Exercise 25

Page 38. Exercise 25 The correct answer is
$\vec{r}(t)=\left\langle 1000 t, 1200 t,-16^{2}+320 t\right\rangle$. It spends $\sqrt{20}$ seconds in the air and lands $4000 \sqrt{305} \approx 6985.7$ feet down range.
\#7. Chapter 2 Section 3 Exercise 10

Page 68. Exercise 10 A more reasonable problem is to use

$$
\vec{r}(t)=\langle 4 \cos t, 4 \sin t, 4 \ln \cos t\rangle
$$

\#8. Chapter 3 Section 3 Exercise 14
Page 48. Exercise 14 the function is

$$
f(x, y, z)=\tan \left(1+2 x^{2} y^{4} z^{2}\right)
$$

\#9. Chapter 3 Section 3 Exercise 17

Page 51. A nicer looking answer is

$$
4 x+2 \sqrt{2} y-5 z=-1
$$

\#10. Chapter 3 Section 5 Exercise 17
Page 86. The function in Exercise 17 is a function of three variables so

$$
f(x, y, z)=y z+x z+x y
$$

\#11. Chapter 3 Section 6 Exercise 13
Page 25. Exercise 13 The global maximum is 19 and the global minimum is -12 .
\#12. Chapter 4 Section 2 Exercise 14
Page 50. Exercise 14: Drop this problem.
\#13. Chapter 4 Section 2 Exercise 3
Page 52. Exercise 3 The answer is $2 \frac{17}{54}$ and the graph is given below.

\#14. Chapter 4 Section 2 Exercise 9
Page 52. Exercise 9

$$
\frac{-4 e^{3}+9 \ln 3-4}{2 e-4-2 e^{3}+6 \ln 3}
$$

\#15. Chapter 4 Section 2 Exercise 11

Page 52. Exercise 11

$$
\frac{(-\pi-4) e^{-\pi / 2}+(\pi-4)\left(e^{\pi / 2}-2\right)}{\pi(\pi-4)}
$$

